On Improving Plan Quality via Local Enhancements

Tomáš Balyo*, Roman Barták*, and Pavel Surynek*,** {tomas.balyo, roman.bartak, pavel.surynek}@mff.cuni.cz

*Faculty of Mathematics and Physics **Charles University in Prague Czech Republic**

1. Background and Objectives

What is Planning?

- ★ Finding plans sequences of actions
- 🖈 Input
 - * A set of actions with preconditions and effects
 - ★ Descriptions of the initial state and the goal state
- ★ Output
 - * Plan = a valid sequence of actions that transform the world from the initial state to the goal state

Our Goal Combine the planning approaches to have

Kobe University, Japan

**Graduate School of

Maritime Sciences

Planning Algorithms

- * There are already many successful planners
 - * **Optimal planners** (find shortest possible plans) are **slow** and cannot handle large problems
 - *** Suboptimal planners** (produce longer plans) are a lot faster and can find plans for harder problems

* We need to choose between quality and performance

2. The Proposed Method

Our Approach – The Basic Idea

- A) Find a sub-optimal plan P
- B) Select a sub-plan (sub-sequence) of **P**
- C) Replace it with an improved subplan (thus improving **P** itself)

How do we do that?

both **performance** and plans of **good quality**

- A) A fast sub-optimal planner finds the initial plan *P* (we used LPG, but any fast planner is suitable)
- B) The sub-plans are selected by systematically shifting a window of increasing size through *P*
- D) Keep repeating B) and C) until the entire plan is optimal or time is out

C) The subplan optimization is formulated as a planning problem and solved by an optimal planner (we used the SAT-based SASE approach)

Window shifting methods: Halfstep (left) and Fullstep (right)

3. Results and Conclusions

Experiments

Cumulative results of eight classical STRIPS domains from the International Planning Competitions * Compared the new method with the fast planner LPG and the optimal planner SASE

The comparison of three window enlargement strategies: turbo = increase by one; expo = increase by a factor of 1.5; random = random size between 2 and 20

Method	Makespan score	∆LPG	∆SASE
LPG	71.27	0.00	-75.38
SASE	146.65	75.38	0.00
Expo-fullstep	170.41	99.14	23.76
Turbo-halfstep	179.53	108.25	32.87

The makespan score of a planner indicates the number and quality of the produced plans. Higher value = better performance

Does it work? – Conclusion

* We can solve as many problems as the fastest planning algorithm

* According to our experiments the **plans** are allways significantly improved, moreover an optimal (or almost optimal) plan is often produced * It is a successful anytime algorithm capable of finding optimal plans